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An Introduction to Self-Organizing Maps

Abstract

This paper gives an introduction to Self-Organizing Maps ( SOMs ), also known as
Self-Organizing Feature Maps or Kohonen Maps, as initially presented by Tuevo
Kohonen [Koh82].
A brief outline of SOMs is given, the biological motivation of SOMs is pointed out
and the given outline is refined to a detailed description accompanied by various
examples. Finally a demonstration of how to apply a SOM to the task of image
color quantization is presented.
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1 Introduction

1.1 A brief outline

SOMs are meant to model a specific subset of the principles inspired by observations
of the human brain’s organization process. One might be tempted to think of
SOMs as structures simulating real biological behavior, including synapses, neurons,
biochemical interactions etc., yet this intuition is misleading [Hay98]. SOMs cannot
simulate the complex parallel workings of the human nervous system, but they aim
to reproduce an observed behavioral principle and by doing so they in fact do turn
out to be powerful tools as we point out in this paper.

The special principle that SOMs aim to imitate is the mapping of high-dimensional
input data to a low-dimensional output network in a topology preserving way, i.e.
similar inputs are mapped to similar outputs. This feature makes SOMs especially
useful for visualization tasks of complex structures that would otherwise be hardly
recognizable by humans. Though Self-Organizing Maps form a subset of so-called
artificial neural networks [Kri07], no prior knowledge of these is required to fully
understand the inner workings of SOMs.

1.2 The biological motivation

One part of the human brain, the visual cortex, gives a descriptive example of the
principles how SOMs are organized: The field of view as perceived by sensory cells
in the human eye is mapped to the visual cortex such that continuous areas in
the view are mapped to continuous planar neural networks in the cortex [R0j96],
so similar regions in the input space of the eye are mapped to similar regions in
the output space of the brain. By storing and processing high dimensional visual
information in the visual cortex, the brain must clearly quantize that input for its
planar neural topology.

Even further, the parts of the view that are most important for recognition, i.e. the
center parts, are mapped to relative large areas of the cortex though they form a
relative small area in the whole field of view, so information density is non-uniform
and determined by its importance.

It has as well been observed that the absolute positions of the visual cortex’ networks
are not fixed, so in topological terms it is not import where information is stored,
but it is important in which context information is stored. The details of how SOMs
model this biological behavior are discussed in the next chapter of this paper.
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2 Fundamentals of Self-Organizing Maps

A Self-Organizing Map is comprised of two building blocks, a node set data structure
representing the actual map content and algorithms the apply to that node set. The
application of algorithms to the node set forms the actual organization process, and
for that organization process modifies nodes according to input vectors, organization
has the meaning of learning in biological terms. The basic principle of building a
SOM is to set certain operational parameters, initialize its node set and apply its
algorithms to modify its nodes set according to the inputs presented. The output
of any SOM organization process is just its node set representing the final state of
the SOM, so hereby that node set is referenced as output node set. For the generic
nature of any SOM, the output node set is a generic structure as well, so usually
further processing is required to extract the required information. Unlike neural
networks which perform supervised learning, SOMs can learn unsupervised, i.e.
they do not have to be presented expected results beforehand.

2.1 The output node set

The output node set models the actual map of a SOM and represents its internal
state. The elements of the output set, referred to as output nodes accordingly,
possess two attributes each, a fixed position and a mutable weight. The position
refers to a node’s topological location on the map, the weight holds the actual infor-
mation payload associated with the node. In biological terms the map corresponds
to a memory network made up of neurons, which in turn correspond to nodes.

Note that the node set and the map are just different representations of a SOM’s
node collection, and depending on the context it is either convenient to address
nodes as tuples of the output node set in a mathematical fashion or as structures
indexed by their positions on a map. For illustrative purposes it is most convenient
to display the map representation so one can easily figure out the topological map
layout.
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Figure 1: Set and map node representations

Though in practice one- or two-dimensional maps with a flat or rectangular layout
as shown in figures 2 and 4 are used most commonly, certain tasks might benefit
from more exotic layouts as shown in figures 3, 5, 6 and 7.
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Figure 4: A uniformly spaced two- Figure 5: A non-uniformly spaced two-

dimensional rectangular layout dimensional layout
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Figure 6: A uniformly spaced two- Figure 7: A uniformly spaced three-
dimensional circular layout dimensional cubic layout

Note that the positions of the nodes are initially set up once and not altered by
the map organization process afterwards. This might sound a little confusing at a
first glance for one might imagine the nodes to "move” for topological preservation,
but actually it is never the nodes’ positions to be altered but the nodes’ weights.
This fixed positioning keeps the neighborhood relations between nodes immutable,
which in turn is the key for topological preservation.

In the upcoming description of how nodes are organized, variations of topological
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positions are denoted as distances and variations of weights are denoted as differences
to clearly distinguish both.

2.2 Creation and Organization outlined

Before going into detail, a simplified brief outline of the SOM creation and organi-
zation is given to point out the working principles.

2.2.1 Initialization

Create a fixed-size output node set such that each node is assigned a position
according to the desired map layout and a weight having the same dimensionality
as the expected input vectors. It is common practice to set the weights to random
values, but for certain tasks it might as well be useful to take specific presets.

2.2.2 Organization

The map organization is performed by the application of learning cycles as denoted
below:

1.) For each learning cycle do

2.) For each input vector do

3.1) Find the single output node which weight matches the input vector
most closely. If there are multiple output nodes that equally match
the input vector, choose a random one of those.

3.2) This step forms the heart of the organization process:
Adjust the weight of the winning output node just found to closer
match the input vector, and adjust the weights of this node’s topo-
logical neighborhood as well.
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3 Details of Self-Organizing Maps

3.1 Creation

Let S denote the output node set to be created, and let I denote the input vec-
tor space. For each node n; € S its position n;,,, must be set according to the
desired output map layout, and its weight n;, ., must be initialized such that
dim( ) = dim(1).

niweight

Example 1: Output node set creation

An output node set S := {ng, ny,n2, ng} that features a two-dimensional output
node map and expects three-dimensional input vectors could be set up as shown
in figures 8 and 9.

n; n; N peiah !
pos weight 3
no || (1,1)] (2,4,8)
2
ni (371) (07070)
ne || (3,3)](13,3,7) SRORRO,
0 T
ng || (1,3)](65,0,2) o1 2 5 4
Figure 8: Node settings Figure 9: Map layout

Note that the weights were chosen randomly, just any three-dimensional vector
would perfectly fit here.

3.2 Organization

In order to specify how the SOM organization is to be performed in detail, according
operational parameters must be set beforehand. As outlined in Section 2.2.2, the
whole learning process is split into separate learning cycles, so let t,,,, denote the
number of these learning cycles. The adaption of nodes’ weights to input vectors is
affected by another two parameters, the learning rate n and the neighborhood radius
0. The learning rate specifies to what degree the nodes generally adapt to a given
input vector, and the neighborhood radius determines to what degree neighborhood
nodes adapt depending on their distance to the winning node. Both parameters
are subject to change with time, so let 7y and oy denote their initial values, n(n)
and o(n) denote their values according to the time ¢ respectively. Henceforth, let T
denote the set of input vectors and let S denote the output node set.

3.2.1 Winning node determination

The winning node is Nyinner € S is determined such that among all output nodes
it features the least difference between its weight and the input vector v. Hence,
Nuwinner MUst satisfy the condition

Vn; € S 0 diff(Nuwinneryeigne: ©) < diff(n4,,, 0, V)

7



Christoph Brauer

with diff(z,y) denoting the difference between x and y. Accordingly, a function
bmu(v) ( best matching unit ) that identifies the winning node depending on the
input vector v can be defined as

bmu(v) = arg min diff(v,n,,,,.),i=0,1,...,[S] =1

For SOMs can operate on highly complex input vectors such as multimedia data
or even text files, no general metric can be applied as a difference function. For
the special but common case that the input vector space is just the set R*, the
Euclidean distance is commonly used as a difference function, though even in this
case there are multitudes of different metrics that could just be applied as well.

Example 2: Winning node determination

Let S be the node set as denoted in figure 8, and let v be an input vector
v:=(10,20,30) € R3. Let the Euclidean distance be chosen as a measure of
difference, so for each node n; € S the result of the equation |n; — v| is:

D) 10y — v = /(2 — 10)2+ (4 — 20)% 1 (8 — 30)% ~ 28,35

i) |11, — vl = /(0 —10)2+ (0 — 20)% + (0 — 30) ~ 37,42

iii) [ng,..,., — v] = 1/(13 = 10)2 4 (3 — 20)% + (7 — 30) ~ 28,76

iv) |ns,., . —v| = /(65 — 10)2 + (0 — 20)2 + (2 — 30)% ~ 64,88

weight

The least difference is found between the weight of ny and v which makes ng the
winning node. More formally, ng is the winning node for

o

weight - U| = min{|nkwei9ht - ,U| : nk? G S} (31)

3.2.2 Weight adaption

The determination of the winning node is followed by the adaption of all output
nodes’ weights according to the given formula:

Nieight (t+ 1)1 = ?iweight (tz +  n(t) 'ﬁ(|nwinne7’ —ngl,t) - (v — niieighz(t))

. . e .
adapted weight current weight  learning rate  neighborhood function Aeight
N 7

TV
weight scaling

(3.2)
As pointed out in above formula, the degree to what an input node’s weight adapts
to the input vector is determined by a scaling factor comprised of the current
learning rate n and the neighborhood function h.

The learning rate n is a real number such that 0 < 7 < 1 and should decrease
with time strictly monotonically, hence n(t + 1) < n(t). Popular decay functions

8



An Introduction to Self-Organizing Maps

applicable to n are illustrated in figures 10 and 11 with the exponential decay being
the most commonly used one.

T~

- 0.5 \\ - 0.5 \
\
0 0
-0.5 -0.5
0 2 4 6 8 10 0 2 4 6 8 10
Figure 10: Exponential decay function Figure 11: Linear decay function

Equations according to figures 10 and 11 :

Exponential decay function: f(z) =k-e > for k=1, \ =2 (3.3)

1
Linear decay function: f(z) =k+x-mfor k=1,m = 10 (3.4)

According to Haykin [Hay98], it is been observed to be a valuable choice letting the
learning rate start with an initial value 7y close to 0.1 gradually decreasing with
time towards its final value 7y close to 0.01, though these settings may vary by
specific maps. An adaption of the general exponential function as illustrated in
figure 10 can be used as a learning rate function such that

ty.(log(Ly. —1 _
(1) = m - K o i) 35)

for an arbitrary value of k # 1 as shown in figure 12. Though this function yields
the expected results, Haykin proposes a simpler function as denoted by equation
(3.6):

t

n(t) =mno - e fmax (3.6)

This learning rate function reaches its minimum at 7(tna) = 7o - é ~ 1o -0.37 and
thus does not exactly match the desired value of 0.01, but it has been observed
that in practice this function is sufficient for it decreases towards a value close to
0.01 in an exponential fashion as shown in figure 13.

9
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Figure 12: Function graph of eq. (3.5) Figure 13: Function graph of eq. (3.6)
with 9 = 0.1, ny = 0.01, £ = 2 and  with 79 = 0.1 and ¢,,,4, = 50
tmaz = 90

The neighborhood function specifies to what amount a neighborhood node adapts
to the given input vector according to its topological distance from the winning
node. One way to imagine the neighborhood function is in terms of gravity: the
winning node forms the center of gravity, and the surrounding neighborhood nodes
are influenced by the winning node according to the strength of its gravity field
denoted by the neighborhood function.

Figures 14, 15, 16 and 17 illustrate normalized popular neighborhood functions
with d denoting the distance between the current node and the winning node. The
Gaussian function has been observed to yield highly valuable results and thus is
the by far most popular choice, the Mexican hat function was proposed by Tuevo
Kohonen in his initial SOM paper [Koh82] for it models the biological behavior
most closely, and the rectangular and triangular functions form rather simple
alternatives.

-0.5 -0.5

4 2 0 2 4 4 2 0 2 4
d d
Figure 14: Gaussian function Figure 15: Mexican hat function

10
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0.5 0.5

-0.5 -0.5

d d

Figure 16: Triangular function Figure 17: Rectangular function

Equations according to figures 14, 15, 16 and 17 :
42
Gaussian function: h(d) = e 202 (3.7)
d? 2
Mexican hat function: h(d) = (1 — ;) 63 (3.8)
11— ifjd) <
Triangular function: h(d) = - i |_'J (3.9)
0 otherwise
1 if|d| <
Rectangular function: h(d) = it |d] __O (3.10)
0 otherwise
for the neighborhood radius ¢ = 1

Note that unlike the difference function which can be specified by various met-
rics, the topological distance is always determined by the Euclidean distance.
As implied by the given example equations, the neighborhood function not only
depends on a distance, but on a neighborhood radius ¢ as well. The meaning
of ¢ depends on which neighborhood function is chosen: for the rectangular or
triangular functions, o denotes the radius in which those functions return a value
greater than zero, but for the Gaussian function o denotes the inflection points, so
that function must not simply be assumed to yield zero for a distance greater than o.

11
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Example 3: Neighborhood function

y 1///// o N
8 8 - .
6 \H \\H ,’I 6 \‘\
O ® {0 ® O
1O 08 .
SICHCHCHO RSO
0 T T T T z 0 — = T r
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 T 8
Figure 18: Topological distance Figure 19: ¢ = 5.0 denoted by the
15,05 = M1, | ~ 4.47 dashed circle

Let ng denote the winning node and ny; denote the current node to be altered.
For o0 = 5 the result of the Gaussian neighborhood function h(d) is

2
_ (U75p0s ~M11pos )

h(|ns,,, — i) =€ =eT =" & 0.67

For the sake of simplicity the detail that o is about to decrease with time has been
omitted in the above explanation. To catch up on this property, o is substituted by
o(t), so h depends on time as well and h(d) simply becomes h(d,t). For instance,
the Gaussian neighborhood function depending on distance and time is denoted by
eq. (3.11):

42

h(d,t) = e 2o®? (3.11)

Just like 1, o should shrink gradually by time, either in a linear or an exponential
fashion. As proposed by Haykin, the initial neighborhood radius g should be set
to span the whole output map and o(¢) should decrease with time such that finally
only the winning node itself or its nearest neighbors are included. The according
equation is denoted by eq. (3.12) and illustrated in figure 20.

_ t-log og
( tmax )

(3.12)

o(t)y=o0¢p-e€

12
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Figure 20: o(t) for oy = 20 and t,,,4, = 1000

3.2.3 Complete algorithm

Now that all building blocks of the organization process are introduced, the final
algorithm can be composed in an easy understandable bottom-up manner:

fort=0tot,,,. —1do
for each v in I do
Nuinner <— bmu(v)
for each n; in S do
Wieignt $ Mieigne T n(t) - h<|nipos — Nwinnerpos
end for
end for
end for
return (5)

7t) ’ (U - niweight)

13
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4 Example - Image Color Quantization

Image color quantization refers to the task of reducing the total amount of distinct
colors used to reproduce a digital image. The quality of any color quantization is
determined by the similarity of the full-color input image and the reduced-color
output image. Though there are certain definitions of ”similarity”, we refer to
similarity as perceived by the human eye when looking at images.

Self-Organizing Maps featuring the ability to group similar data are highly valuable
tools for this task. The basic idea of how to use a SOM for image color quantization
is to construct a SOM with its output nodes reflecting the desired output colors
and passing the pixels of the input image as input vectors to that SOM.

A small Python program has been developed by the author of this paper to
implement an SOM based image color quantizer. Without going into too much
technical detail here, the implementation follows the upcoming algorithm :

1. Create an empty input vector set [

2. For each 24-bit pixel in the truecolor input image add a (R,G, B) tuple
representing that pixel to [

3. Create a SOM with a node set S such that |S| denotes the amount of distinct
output colors and each node’s weight features 3 dimensions

4. Set the SOM’s operational parameters and organize it by presenting each
veltoit

5. Once the organization is finished, the weights of the output node set represent
the colors found, i.e. the new color palette

6. Create the output image such that each pixel of the input image is mapped
to the palette color closest to it

4.1 Results

Two 24bit truecolor images were chosen as illustrative sample inputs, a picture of
Selene as shown in figure 21 and a picture of Lord Vader, Lando Calrissian and
Boba Fett as shown in figure 22. For each picture, the number of colors has been
reduced from 16.8M to 16, once using the sample SOM implementation and once
using gimp’s color reduction function which is known to use the popular median-cut
algorithm [Hec82]. Though in terms of speed gimp performed magnitudes faster
than the reference SOM implementation, in terms of perceptual quality the results
of the SOM implementation can compete or even outperform gimp as illustrated.
For a highly optimized implementation of a SOM color quantizer, the program
"pngnqg” [Coy| based on the NeuQuant algorithm [Dek94] is recommended.

14
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UNDERWORLD

Figure 21: Selene Figure 22: Lord Vader et al.
16.8M colors 16.8M colors

Figure 23: Selene Figure 24: Lord Vader et al.
16 colors ( SOM ) 16 colors ( SOM )

Figure 25: Selene Figure 26: Lord Vader et al.
16 colors ( gimp ) 16 colors ( gimp )
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5 Conclusion

Self-Organizing Maps can be valuable tools for a broad range of applications that
benefit from the ordering of input data by degrees of similarity. Their generic
structure allows for operation on nearly any kind of input data as long as a metric
on those can be provided, and their ability to learn in an unsupervised fashion
enables them to adapt to even completely unforeseen input patterns without any
supervisory intervention.

These advantages make the Self-Organizing Maps popular choices for tasks like
clusterization [BLPO05], image compression[ALV03], image color quantization[Dek94|
or even organization of text document collections [HKLK97].

16
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